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Abstract

We study the dynamics of behavioral transitions when European starlings (Sturnus 6ulgaris) experience stepwise
changes in the value of a meaningful time interval. Subjects were primed to respond at a certain time T1. After
extensive training, the primed time changed to a new value T2. In Experiment 1 subjects were reinforced on 40% of
the trials and they experienced a single transition which lasted until asymptotic behavior was reached. Starlings
showed a progressive adjustment to T2, with no obvious discontinuities. In Experiment 2, probability of reinforcement
was initially 20%, and the schedule switched to extinction after a varied number of trials were reinforced at the
post-transition time. The number of post-transition reinforcements was used as independent variable. Behavior was
examined in extinction to judge the state of temporal performance after a controlled amount of experience. Under
these conditions, adjustment to T2 took place in two stages, and there was an intermediate phase when behavior
changed little. These results are consistent with the hypotheses that animals continuously update the subjective
probabilities that reinforcement comes at any given time and that responding occurs when the current estimate is
above a certain threshold. We show that in spite of the continuous updating of time estimates, responding can show
either continuous or discontinuous adjustments depending on the vicinity of the pre- and post-transition times and the
probability of reinforcement. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Behavioral timing includes two classes of phe-
nomena, periodical or rhythmic timing and inter-
val timing. The former allows organisms to tune
their activity to regular environmental contingen-
cies such as daily or seasonal fluctuations in op-
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portunities or predation risks; because the rele-
vant periodicities are similar across generations,
the periods of the cycles can be coded genetically,
leaving the phase adjustment to individual experi-
ence. Interval timing, in contrast, concerns the
adjustment of behavior to the elapsed time be-
tween arbitrary events, and hence the length of
the intervals has to be learned.

Given that the need for learning is a diagnostic
feature of interval timing, it is paradoxical that
the process of learning about time intervals, that
is, the dynamics of how behavior becomes tuned
to specific interval lengths, has been largely ne-
glected in the timing literature. The two predomi-
nant theoretical approaches to animal timing,
Scalar Expectancy Theory (SET, Gibbon, 1977;
Gibbon and Church, 1984; Gibbon et al., 1984)
and Behavioral Theory of Timing (BeT, Killeen
and Fetterman, 1988) address behavior at the
steady state, when subjects, having experienced a
given interval repeatedly, have acquired a stable
response pattern.

The study of the dynamics of behavioral adjust-
ment to temporal properties of the environment
has remained, with few exceptions, only mar-
ginally connected to mainstream theoretical ap-
proaches. It has proceeded along various lines,
but we refer here only to a few approaches that
are specially relevant to the present study (for an
example of important work on dynamics which
we will not address see Mazur (1997)). Meck et al.
(1984) trained rats according to a peak procedure
(Catania, 1970; Roberts, 1981). In every rein-
forced trial, subjects received a stimulus and the
first response after a pre-determined interval had
elapsed resulted in a food reward. Rats normally
start responding before the typical time of rein-
forcement and keep responding until food is ob-
tained. Intermingled with these reinforced trials,
however, there were empty trials in which no
reinforcement occurred. Typically, in an empty
trial an animal starts responding as in normal
trials and stops some time after reward should
have occurred. The pattern of responding in these
empty trials (the times at which responding starts
and stops, and the central or ‘peak’ value between
these extremes), is a measure of how behavior is
tuned to the normal time of reward. To study

dynamics, Meck et al. (1984) introduced an
unsignaled change in the typical timing of reward
(from 10 to 20 s for a group of rats, and from 20
to 10 s for another group) and examined how
response patterns changed with experience. They
report that after the transition in reward time
their subjects maintained their original pattern for
a number of trials, then jumped to a new phase in
which the peak of responding occurred close to
the geometric mean (square root of the product)
between the old and new intervals, and finally
jumped again to the post-transition interval.

Lejeune et al. (1997) extended the experimental
procedure used by Meck et al. (1984) by exposing
the rats to different times of reinforcement and
using different proportions of reinforced trials.
Although Lejeune et al. (1997) report two-step
transitions in one of their experimental condi-
tions, their most common finding is a gradual
modification of the timing of the peak of respond-
ing during downward transitions (new reinforced
time shorter than the previous reinforced time),
and an abrupt increase in the time of the peak of
responding after a single reinforcer at the new
criterion, followed by a gradual approach to the
asymptotic criterion, during upward transitions.
Lejeune et al. (1997) explain their basic findings in
terms of a hierarchical model: at the top level, rats
must identify the temporal dimension as being the
one correlated with reinforcement. This may take
a large number of trials, but it needs only be done
once at the start of the experiment. When the time
to reinforcement changes, only the new time to
reinforcement has to be learned. This, they argue,
can be done using an exponential weighted mov-
ing average (EWMA), of the sort modeled by
Killeen (1981). But, as Lejeune et al. (1997) recog-
nize, this approach fails to explain the appearance
of two-step transitions in some conditions. Fur-
thermore, they state that the dependence of two-
step transitions on the parameters of the
experimental conditions ‘provides another theo-
retical problem untreated by the EWMA model
or, indeed, by any others’ (229 pp.).

A different approach of immediate relevance
for our study is that favored by Staddon and
co-workers (for recent developments and refer-
ences to this literature, see Higa, 1997a,b). These
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researchers have exposed rats and pigeons to re-
sponse-initiated delay and fixed-interval sched-
ules, and have studied the effect of modifying the
inter-food interval (IFI) on the wait time (time
elapsed between a reinforcement and the next
response). As a general rule, wait time changes as
soon as the IFI is modified. But there are some
complications: the adjustment in wait time de-
pends on the actual values of the IFIs, it can
continue gradually after the initial jump, and it
proceeds faster in downward than in upward tran-
sitions (exactly the opposite effect from the one
reported by Lejeune et al., 1997). No two-step
transition in wait time has, to our knowledge,
been reported to date. Research on the adaptation
of waiting times has generated a number of mod-
els, based on the idea that waiting times are
determined by the IFI’s during the last few trials,
with shorter IFI’s having a disproportionate effect
(Higa, 1996; Wynne et al., 1996).

Comparison of the results obtained by Meck et
al. (1984) with those of Higa (1997a,b) and Leje-
une et al. (1997) is difficult because of procedural
differences and also because of the treatment of
the data: while Meck et al. (1984) report two-step
transitions in individual data, later work has re-
ported group averages (Lejeune et al., 1997) or
individual average values over several sessions
(Higa, 1997a,b). As pointed out by Meck et al.
(1984), the average of several two-step transitions
will be a continuos transition unless all the steps
are positioned on the same trial. While a disconti-
nuity on the average data will always reflect a
discontinuity in the individual data (the average
of continuous functions is also continuous), the
reverse is not necessarily true: discontinuous indi-
vidual transitions may hide behind continuous
averages.

Yet another line of previous work on dynamics
of time perception which connects with our inter-
ests here is that pursued within the scope of
optimal foraging theory. The rationale underlying
this work is exemplified by work that uses the
framework of the Marginal Value Theorem
(MVT, Charnov, 1976). The situation often con-
sidered is that of a consumer who exploits
patchily distributed food. The patches are as-
sumed (or programmed) to deliver diminishing

returns on each visit (normally this implies in-
creasing intervals between prey captures), and
some known travel cost (again, often described as
a time lost to food collection) that must be in-
curred to switch between patches. This task is
very different from the previous ones because the
subjects are not expected to behave as if pursuing
an accurate reproduction of the typical time of
reinforcement. Instead, the dependent variable of
interest is the initiation of patch switches. Because
patches deplete, it comes a point in each cycle
where the subject benefits by leaving the present
patch and traveling to a new one. The point at
which this occurs (that is the degree of depletion
tolerated before a switch) depends on the subject’s
expectation of forthcoming travel time: the longer
the expected travel time the greater the tolerance
to depletion. Researchers in this area have studied
the dynamics of tolerance to depletion (patch
time) as a function of temporal manipulations of
travel time (Kacelnik and Todd, 1992; Todd and
Kacelnik, 1993; Cuthill et al., 1994). Of special
relevance here is the work of Kacelnik and Todd
(1992) and Todd and Kacelnik (1993) which used
various mixtures of travel times to uncover the
process by which patch time responds to recent
travel experience. They found that accommodat-
ing the data required assuming sensitivity to both
the most recently experienced and the longer term
average of travel times, and suggested a model
that combined the assumptions of SET for the
structure of reference memory, the decision rule
suggested by optimal foraging theory and a dy-
namic algorithm for updating of time estimations.

In this paper we report the results of two
experiments in which European starlings (Sturnus
6ulgaris) were exposed to a sudden modification
of the reinforcement time in a variant of the peak
procedure and then examine our results, together
with those from several of the studies described
above, within the framework of theoretical ac-
counts of behavioral timing. In particular, we
examine if a variation of the model proposed by
Todd and Kacelnik (1993) for the MVT with a
decision rule that reflects the logic of the peak
procedure can generate both the continuous and
discontinuous (two-step) transitions obtained in
this kind of experiments.
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2. Experiment 1

The first experiment combines the protocols
used by Meck et al. (1984) and by Brunner et al.
(1992). Starlings were trained in a peak procedure
and, after extensive training, the time to reinforce-
ment was changed from 20 to 10 s in stepwise
fashion. In contrast with the procedure used by
Meck, Komeily-Zadeh and Church, trials were
initiated and terminated by the subjects, as was
the case in Brunner, Kacelnik and Gibbon’s ex-
periment. This modification of the standard peak
procedure design ensures that the birds are atten-
tive to the beginning of the trials and to some
extent standardizes motivational state, because
trials are spaced by the animal itself, reflecting
their willingness to work for reward. The proce-
dure also yields two additional measures of per-
formance, the time of cessation of responding
before a patch switch and the time of initiating
the switch itself.

2.1. Methods

2.1.1. Subjects and apparatus
Six adult starlings, wild-caught and experimen-

tally naive, were used for the experiment. They
were kept in two indoor aviaries, at 18°C and
with a 13L:11D light-dark cycle (dawn at 06:30,
dusk at 19:30 h), in individual cages measuring
140×40×45 cm3. The subjects could not see one
another, but they were in auditory contact. Birds
received ad libitum turkey crumbs from 13:00 to
15:00 h and six mealworms at 17:30 h when they
were weighed and were food deprived till the
beginning of the following session. There was free
access to drinking water at all times and a bathing
bowl was supplied at the end of the experimental
session.

The experiments were conducted in the home
cages. Each cage had a patch panel in the center
of the back wall with a 4×5 cm2 flapping door
covering a food hopper. This door was in a plane
at 30° with the horizontal and could be illumi-
nated from behind with a green patch light. The
food hopper was connected to a pellet dispenser
(Campden Instruments) filled with turkey crumbs
sieved to an approximately even size. The stan-

dard reward consisted of 15 units of crumbs
(mean weight of 0.18 g, S.D.=0.0216 g; Bateson,
1993). Rewards were signaled by audible clicks
from the pellet dispenser and by a red light next
to the food hopper. A patch perch, 15 cm high
and 25 cm long, with a white patch light above it,
was situated opposite the food hopper. Two travel
perches were situated on either end of the cage,
120 cm from each other and 11 cm above the
floor of the cage. Each perch was connected to a
microswitch which registered the presence (switch
on, perch lowered by ca. 1 cm) or absence (switch
off, perch in rest position) of a starling on the
perch. A ‘hop’ was operationally defined as a
transition from the off to the on state of the
microswitch following an off state longer than
0.25 s. (This restriction was imposed to ensure
that starlings could not operate the switch by
small hops on the perch itself: instead, they had to
leave the perch during at least 0.25 s. In practice,
starlings hopped on the perch from the floor or
flew to and from the cage wall.) There were two
white travel lights situated on the end walls of the
cage, 30 cm above the floor. An Acorn A5000
microcomputer running ARACHNID experimen-
tal control language (Paul Fray Ltd.) controlled
the stimulus events and response contingencies as
well as recording the data from an adjacent room.

2.1.2. Training and experimental procedure
Starlings were first shaped to hop on the patch

perch. Every hop on the patch perch while the
patch light was illuminated was rewarded with a
food delivery. The patch light was then switched
off for the duration of the inter-trial interval
(ITI). We used hopping onto a perch, rather than
the more usual key pecking as a response to make
sure that the response had non-negligible en-
ergetic cost, hence promoting selectivity in the
timing of response emission. After three sessions,
trial initiation was introduced. All lights (except
for house lights) were switched off during the ITI.
At the end of the ITI, the travel lights were
switched on. As soon as the subject hopped on a
travel perch, the travel lights were switched off
and the patch light was switched on. After n hops
on the patch perch, the patch light was switched
off, food was delivered and a new ITI started. In
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the following three sessions the number of hops
required to obtain food was 6, 9 and finally
random with mean 14, respectively.

In the next phase the starlings were exposed
to the peak procedure. Food deliveries followed,
with probability P=0.4, the first hop after 20 s
had elapsed from the initiation of the trial.
Non-reinforced (empty) trials ended after 60 s.
The ITI was 90 s. The sequence of reinforced
and empty trials was random. If a trial was
scheduled to be reinforced at time T (which in a
later stage changed from 20 to 10 s as explained
below), the bird received the reward only if it
produced a response between times T and
1.25·T. This ensured that the starlings were
never reinforced at times much larger than the
scheduled ones. Finally, subject-terminated trials
were introduced after one month of training in
the peak procedure. The final schedule was thus
as follows: at the end of the ITI the travel lights
were switched on. As soon as the starling
hopped on a travel perch; (i) time to food deliv-
ery started to elapse; (ii) the travel lights were
switched off and (iii) the patch light was
switched on. The travel lights were switched on
again after the starling hopped once on the
patch perch. In reinforced trials, the first hop on
the patch perch after a time T had elapsed was
rewarded with food, provided that no more than
1.25·T s had elapsed from the beginning of the
trial. Trials ended when food was delivered or
when starlings hopped on a travel perch. A dia-
gram representing the structure of the trials is
presented in Fig. 1.

Sessions were run 7 days per week. They
started at 07:00 h and ended after 4 h or when
200 trials were completed, whatever came first.
For each trial, the computer recorded the time
(in centiseconds) from one hop to the next and
the duration of the trial. After 2 weeks of data
collection, the time to reinforcement in rewarded
trials was changed from 20 to 10 s, everything
else remaining equal. After 1 more week, the
experiment finished. The results from the 5 days
preceding and following the transition were used
for the analysis.

2.2. Results

2.2.1. Molar analysis: effect of condition
To study the effect of reinforcement time, we

calculated for each bird the average value (over
the last three sessions of each condition) of the
latency to respond (time from the start of the trial
to the first hop on the patch perch), median
response time, time of the last response (giving in
time, GIT) and duration of the trial (moving on
time, MOT). Although response latencies were
longer in the 20 s (average9S.D.: 5.0691.28 s)
than in the 10 s (3.7990.14 s) condition, the
difference was not significant (t5=2.46,
P=0.057). Reinforcement time affected median
response time (before: 18.9290.95; after:

Fig. 1. Schematic representation of the experimental contin-
gencies during a reinforced (top) and an empty (bottom) trial.
For each trial type, the shaded portions of the uppermost bar
indicate when the travel light (TL) was switched on. Shaded
portions of the following bar indicate when the patch light
(PL) was switched on, and symbols on the bottom line indicate
responses of the subjects. An inverted triangle indicates a hop
on the travel perch and a vertical line a hop on the patch
perch. The start of a new trial was indicated by the TL being
switched on. As the bird hopped on the travel perch, the TL
was switched off and the PL was switched on. The TL was
switched on again (indicating that the bird could leave the
patch and search for a new one at any time) upon the first
response in the patch. On reinforced trials, the first hop on the
patch perch after the FI had elapsed (20 s in the initial phase
of the experiment, 10 s in the final phase) was reinforced
(indicated by the concentric circles) and both lights were
switched off for the duration of the ITI. On empty trials, patch
responses were never reinforced and the birds had to terminate
the trial by hopping on a travel perch.
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Fig. 2. Response rate (number of hops per second) before (�)
and after (�) the transition plotted vs. time in the trial (top)
and time relative to the time of maximum response rate
(relative time, bottom). Observe the superposition of response
rates when plotted vs. relative time. In the top panel, the time
of reinforcement before and after the transition is indicated by
dashed vertical lines for reference.

2.2.2. Molecular analysis: transition effects
In view of the results of the molar analysis, the

effects of the transition were investigated on the
peak time (related to median response time and
defined below). Response latencies were too noisy
to show a consistent pattern. Of the three mea-
surements that differed between the two condi-
tions, it has been shown in a different setup that
the MOT is not a good indicator of the subject’s
timing abilities, since it is affected by motivational
factors unrelated to reinforcement time (Kacelnik
et al., 1990; Brunner et al., 1992). From the
remaining two candidates, we selected peak time
for further study because of its lower variability in
constant experimental conditions.

We used two methods to identify the peak time
(Rodrı́guez-Gironés, 1995). One of them looked
for the maximum likelihood estimators of the
break points in an analogue of the break-run-
break analysis used by Gibbon and his collabora-
tors (Gibbon and Church, 1992; Church et al.,
1994; Leak and Gibbon, 1995). The other one
searched for the point of maximum deflection in
the cumulative plot of responses vs. time. Because
the results of both methods were highly correlated
(R2=0.974, PB0.0001), only the analysis of the
peak time as calculated with the maximum likeli-
hood approach will be presented.

The adjustment of the peak time to the new
environment can be seen in Fig. 3. Although the
data for bird 4 presents a discontinuity between
the pre-transition and the asymptotic post-transi-
tion peak time, other graphs seem to correspond
better to a smooth transition. A non-parametric
test can be used to study whether the adjustment
of peak time proceeded in two (or fewer) steps.
The basic idea of this test (described in Appendix
A) is as follows: let di= ti− ti−1, where i is the
number of trials since the modification in rein-
forcement time. If the adjustment of peak time
proceeds in two steps, there should be two large
negative values of di (corresponding to the two
downward steps), and the rest should be ran-
domly distributed: since the number of negative
values of the di exceeded the number of positive
values by more than two (Gp=4.428, DF=1,
PB0.05), and there were no differences among
birds in this respect (Gh=0.711, DF=5, P=

11.3191.35; t5=12.11, PB0.0001), GIT (before:
32.8193.91; after: 22.6095.31; t5=4.39, P=
0.007) and MOT (before: 43.5095.56; after:
29.8696.46; t5=5.45, P=0.003).

Average response rates during the last 3 days of
each condition (Fig. 2) show two important fea-
tures, characteristic of the peak procedure
(Roberts, 1981): the peak of response is placed at,
or close to, the time of reinforcement and, when
response rates are plotted as a function of time
relative to the ‘peak time’, they closely superim-
pose—a clear example of the scalarity of timing.
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0.98), we can reject the null hypothesis that the
adjustment of the peak time proceeded in two
steps.

2.3. Discussion

The hypothesis of a two-step adjustment can be
rejected at the 5% level of significance. This does
not imply a continuous transition (in all rigor, it
makes little sense to talk about continuity when
behavior is recorded as a series of discrete points),
all it implies is that the adjustment to the new
criterion takes place in three or more steps. To
provide a better illustration of the smoothness of
the transition, we have re-plotted the data from
Fig. 3 by pooling empty trials in blocks of ten,
and calculating the peak time for each block

following a variation of the method proposed by
Meck et al. (1984), which makes no assumption
about the pattern of responses. The method
works as follows: we counted the number of
responses (averaged over the ten trials) in each 3 s
interval (1–3, 2–4, . . .) and identified the inter-
val(s) that contained the maximum number of
responses. The peak time was defined as the me-
dian time of the responses comprised between the
start of the first such maximum response interval
and the end of the last one. Fig. 4 shows the
results of such a procedure, after smoothing the
data with a 5R digital filter. This filter works as
follows. Let ti be the peak time in the ith trial, and
mi the median value of {ti−2, ti−1, ti, ti+1, ti+2}.
The filter substitutes, for all i, the median mi for
the trial value ti, a process that is iterated till

Fig. 3. Modification of the peak time in response to the stepwise change of time to reinforcement.
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Fig. 4. Smoothed peak time calculated from blocks of ten trials. The time of reinforcement is plotted as a continuous line for
reference.

convergence. (For details and a discussion of pos-
sible caveats see Meck et al., 1984.)

As it can be seen in Fig. 3, there were oscilla-
tions in the value of peak time. An exploratory
statistical analysis failed to detect any daily pat-
tern that might be responsible for these
oscillations.

We also attempted to investigate upward transi-
tions in peak time. However, the use of subject-
terminated trials made impossible the study of a
10 � 20 s transition because subjects left the
patch before reinforcement was due and, instead
of experiencing the scheduled 10 � 20 transition
they experienced a 10 � extinction � 20 transi-
tion. For this reason, the results of a 10 � 20
transition that followed the 20 � 10 transition

described above are not reported here. Although
it is disappointing to dismiss this data for the
present purposes, it is worth noticing that the
phenomenon we report has implications for the
upward transitions reported in the literature: dur-
ing the first few trials following an upward transi-
tion, individuals may be responding at very low
frequencies at the time when the reward is sched-
uled. Because rewards are normally delivered fol-
lowing the first response produced after the
scheduled time to reinforcement, the low response
rate implies that the first post-transition rewards
may actually be obtained at times much longer
than the scheduled ones. In this respect, two
points should be noticed. (a) The experienced
delay to reinforcement is always greater than the
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programmed one (when response rates are high,
the differences are small but during transitions the
difference can be substantial: the reinforcement is
scheduled at a time when it is not expected and
when response rates are usually low). This implies
that in upward transitions subjects experience a
greater shift than the one planned by the experi-
menter, and in downward transitions the experi-
enced shift is always smaller than planned. (b)
The difference between experienced and planned
shifts in reinforcement is greater in an upward
than in a downward transition. This result is due
to the response pattern. Consider the asymptotic
response rates in the present experiment when
reinforcement came at 10 and 20 s (Fig. 2): When
reinforcement was scheduled at 20 s, response
rates at 10 s were lower than peak response rates,
but still substantial (60% of peak response rates).
On the other hand, when reinforcement was
scheduled at 10 s, average response rates 20 s after
the start of the trial were very low indeed (15% of
peak response rates). The asymmetry reported by
Lejeune et al. (1997)—adjustment is faster in
upward transitions—might therefore reflect the
difference between planned and experienced times
to reinforcement. Indeed, in an experiment with
upward and downward stepwise transitions in
travel time in the context of the MVT, starlings
showed perfectly symmetric adjustment to the
change, taking about six cycles to reach asymp-
totic patch visiting time in both cases (Cuthill et
al., 1994). In the MVT protocol the asymmetry in
the relation between programmed and experi-
enced transition does not occur.

3. Experiment 2

In Experiment 1 there were normally one or
two empty trials between consecutive reinforced
trials. Thus, for a certain amount of experience
with the post-transition reinforcement time (i.e.
for a certain number of trials reinforced at the
post-transition reinforcement time), we had an
average of 1.5 empty trials that we could use to
probe the memory of the starlings. Experiment 2
was designed to increase the number of samples
for a given amount of experience after a stepwise

change in input. Subjects experienced the same
transition in reinforcement time (20 � 10) once
per week. After a certain number of reinforced
trials, N (that changed from session to session),
reinforcement was interrupted for 30 trials. As a
result, for each value of N employed, we had at
our disposal 30 empty trials to probe the memory
of the subjects. Therefore, this method gives a
clearer picture of the starling’s reference memory
for a given amount of experience, but it does not
allow to follow each transition until asymptotic
behavior is reached.

3.1. Methods

Subjects were six adult wild-caught starlings,
experimentally naive. They were kept in the same
aviaries as those used for Experiment 1 and used
the same panels that were used for Experiment 1.
Training was as for Experiment 1, except that the
reinforced response was a peck in the door cover-
ing the food hopper and the probability of rein-
forcement per trial was P=0.2. The general
conditions (food deprivation, length and timing of
sessions, trial termination) were identical to those
in Experiment 1. Sessions were divided in two
groups: baseline sessions and transition sessions.
In baseline sessions trials were reinforced with
probability P=0.2 after 20 s from the beginning
of the trial. Transition sessions (Fig. 5) started as
baseline sessions, but once the bird obtained 45-N

Fig. 5. Schematic representation of a transition session for
N=12 (top) and 20 (bottom). After 45-N trials reinforced at
20 s, the time to reinforcement was changed to 10 s for N
reinforcers. These trials were followed by 30 consecutive empty
trials (extinction trials) and the session ended with as many FI
20 trials as the bird managed to complete. In both the FI 20
and FI 10 conditions, trials were rewarded with probability
P=0.2. Reinforcers are represented by vertical lines, and the
time of reinforcement by the height of these lines.
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reinforcers (with N=0, 1, 2, 3, 5, 7, 9, 12, 15, 20,
25, 30 or 35 in different sessions) the time to
reinforcement was changed to 10 s. The probabil-
ity of reinforcement remained at P=0.2 until the
bird collected N reinforcers at 10 s, at which point
the probability of reinforcement was set equal to
zero for 30 trials (thus, the 30 extinction trials
always occurred after 45 reinforcers). After these
30 extinction trials the initial conditions were
re-established, with reinforcement occurring at 20
s with probability P=0.2. There was one transi-
tion session every Thursday. All birds received the
N=0 session during the first week to verify that
they would keep responding for 30 extinction
trials, and sessions with other values of N were
scheduled following a modified Latin square
design.

Responses during the extinction trials of the
transition sessions were recorded as the number of
responses (pecks) in each 1 s interval. Because
bird 5 died after 4 weeks, its data will be shown in
the figures but was not used for statistical
analyses.

3.2. Results

Fig. 6 shows individual response patterns dur-
ing the extinction trials for three values of N
(N=0, 15 and 35). Each curve represents the
number of pecks produced per 1 s bin during ten
consecutive empty trials (thus, average pecking
rates are obtained dividing plotted values by ten).
Response rates at the peak time in Experiment 2
(ca. 1.5 s−1) where higher than in Experiment 1
(0.64 s−1; compare Figs. 2 and 6), as one could
expect from the fact that hops on a perch are
more costly than pecks, both in terms of time and
energy. Response patterns are unimodal at all
stages and show no consistent modifications as a
function of time since the last rewarded trial. We
therefore pooled, for each bird, the data from the
30 trials corresponding to a given transition ses-
sion and calculated a single peak time from these
30 trials using the procedure explained for Fig. 4.

Fig. 7 shows how peak time decreased as the
birds experienced an increasing number of pre-ex-
tinction rewards at 10 s. The peak time then
stabilized before decreasing further. This trend

can be seen more easily by taking the average of
the peak time across the different birds (Fig. 8).
The non-parametric test described in Appendix A
shows that the data from the five birds was homo-
geneous (Gh=0.527, DF=4, P\0.95) and that
the transition proceeded in more than two steps
(Gp=3.97, DF=1, PB0.05).

3.3. General discussion

In spite of large inter-individual variability, the
pattern that seems to emerge from Experiment 1
is that, in response to a stepwise environmental
transition, starlings adjust the timing of their be-
havior in a smooth fashion (Fig. 4). The results
from Experiment 2, on the other hand, suggest
that there is a small range of experienced new
values after a transition for which behavioral
modifications are basically at a halt (Fig. 8). This
latter pattern is reminiscent of the two-step ad-
justment reported by Meck et al. (1984), but it
should be remembered that adjustment to the new
time of reinforcement proceeded in more than two
steps: thus, although in Experiment 2 starlings
adjusted their response time in two stages, each
stage consisted of several small jumps.

There are some similarities between our results
and those obtained by Lejeune et al. (1997) with
rats. First of all, adjustments to the new time to
reinforcement in downward transitions (such as
the 20 � 10 transition reported in our experi-
ment) proceeded gradually when the proportion
of reinforced trials was elevated (40%, Experiment
1), and two-stage transitions appeared when the
proportion of the reinforced trials decreased
(20%, Experiment 2). Lejeune et al. (1997) report
gradual transitions when the proportion of rein-
forced trials was 70%, and appearance of two-step
transitions when the proportion of reinforced tri-
als fell to 50%. Because of the many differences
between the studies (including the use of different
species), it may be fruitless to seek explanations
for all differences in results, but we believe that
the common finding that discontinuities in the
transition became apparent at lower reward prob-
abilities is interesting and may be accounted for
by a theoretical model that we present below.
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Fig. 6. Individual response patterns during extinction trials. Each panel represents, for one particular bird and N trials rewarded
after 10 s, the number of pecks given in 1 s bins over the first (solid line), second (dotted line) and third (dashed line) blocks of ten
extinction trials. Columns correspond to different values of N (from left to right, N=0, 15 and 35) and rows to different birds (from
top to bottom, 0 to 4). Bird 3 only finished 23 extinction trials with N=15.

4. A conceptual model: subjective probability and
optimal responding

To make a start in the development of a the-
oretical account for dynamics of responding in
the peak procedure, we will focus on the hypo-
thetical goal of responding. Our aim is not to

produce a rigorous model of the energy-
maximizing behavior of starlings in the peak
procedure. Instead, we will discuss qualitative
aspects that the optimal response pattern may
show under the constraints imposed by realistic
assumptions on temporal information process-
ing.
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Fig. 7. Peak time vs. number of reinforcers (N) experienced
after a transition from 20 to 10 s.

The estimated reinforcement probability, P(t),
will depend on the pattern of variability in the
‘clock’ and in memory. Following SET, and the
need to accommodate Weber’s Law, we will as-
sume that in the peak procedure P(t) is a normal
distribution, centered around the time of rein-
forcement, T, and with standard deviation pro-
portional to T. The rule P(t)\b will be satisfied
for a period of time centered at T, and a ‘peak
time’ in responding on a given trial would be
identified as the center of this period.

As a preliminary to discussing transitions, we
now consider a static situation where reinforce-
ment can come at times T1 with probability P1,
and T2 with probability P2 (we will assume that
T1BT2 and P1+P2B1). What is the optimal
response pattern? Let as assume that P(t) is the
combination of two normal distributions, cen-
tered at T1 and T2, each of them weighted by the
corresponding probability of reinforcement, P1

and P2. Subjects will normally start responding
before T1 and, if reinforcement does not arrive at
this time, they will respond again around T2.
What happens in between T1 and T2? Clearly, if
T1 and T2 are similar to each other, subjects
should not make a pause after T1. If, on the other
hand, T2 is much larger than T1, there will be a
time in the trial when subjects are sufficiently sure
that T1 is past and T2 still to come to cause a
pause. Whether there is a pause or not, and how
long the pause should be to maximize payoffs,
must be determined for each specific experiment
from the times and probabilities of reinforcement,
the cost of responding, and the value of the
reinforcer. The peak of response (average re-
sponse time) generated by this conceptual model
is plotted in Fig. 9 for different combinations of
T1 and T2, P1 and P2, and b.

We can now apply these ideas to what should
happen during a transition. Suppose that subjects
react to the modification of reinforced time as if
reinforcement might come at T1 or T2 with proba-
bilities P1 and P2, where P1 decreases and P2

increases as more and more trials are reinforced at
T2 (without any trial being reinforced at T1 any
longer). If subjects react like this to a modification
of the time to reinforcement, Fig. 9 will describe
the adjustment of peak time in an experiment

We assume that at each time t within a trial, the
subject has some estimated probability of rein-
forcement, P(t), which in general will be different
from the scheduled probability. As a first approx-
imation to the optimal policy, one can take the
following family of rules: subjects respond
whenever P(t) exceeds some threshold, P(t)\b.
By modifying the value of the threshold subjects
can adjust to different experimental situations.

Fig. 8. Average peak time vs. number of reinforcers (N) at 10
s. Error bars are S.E.
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Fig. 9. Expected peak-response time (in s) when the expected
probability of reinforcement is P(t)= [P1×P(t �T1)+P2×
P(t �T2)]/(P1+P2) and starlings respond whenever P(t)\b.
(Where P(t ;Ti) is a normal distribution with mean Ti and S.D.
0.2 · Ti). Each curve represents the value of the peak response
time as a function of P2/(P1+P2). Within each panel, the five
curves correspond to different values of T2 (T1=20 s in all
cases), and the different panels are associated with different
values of b (indicated in the upper, right-hand corner of the
panels).

where the reinforced time changes from T1 to T2:
all we have to do is re-scale the x-axis so that it
indicates trial number, instead of estimated value
of P2.

Notice that, in Fig. 9, a number of adjustment
patterns are shown: when T1 and T2 are close
(T2=12.4 and 15.0 s), the peak time changes
gradually, regardless of the response threshold.
When the two reinforced times are more easily
discriminable (T2510 s), the transition is contin-
uous for low threshold values (high response
rates), proceeds roughly in two stages (which are
not flat) for intermediate threshold values and, for
very high thresholds, the intermediate stage
shrinks to the extend that the pattern reminds of
a one-step transition. It is clear from Fig. 9 that,
when the adjustment proceeds in two stages, the
intermediate stage does not lie around the geo-
metric mean of the two times of reinforcement (as
was the case in the results from Meck et al., 1984).
The difference may simply come from the way in
which peak time has been calculated: the method
proposed by Meck et al. (1984) cannot be applied
to our model, and different operational definitions
of peak time (we used average time of the re-
sponding phase) can lead to quantitatively differ-
ent results.

These considerations can help us understand
the appearance of the steps as the overall proba-
bility of reinforcement decreases, a result first
reported by Lejeune et al. (1997) and present also
in our data. We have seen that the optimal re-
sponse pattern will be dictated by cost-benefit
trade-offs. If the response threshold increases as
the probability of reinforcement decreases (as the
probability of reinforcement decreases, respond-
ing becomes relatively more expensive), this in-
crease in response threshold will be associated
with the appearance of the two-stage transitions,
as shown in Fig. 9.

Our approach can also shed light on the differ-
ences between the data on wait time and on the
peak of responding. When subjects experience a
transition from T1 to T2, there is a stage during
which both times have an above threshold proba-
bility of reinforcement, and subjects respond
around both T1 and T2. Hence, if T1BT2, there is
no reason to modify the time when responding
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starts, as the start of responding is controlled by
the memory for T1. On the other hand, if T1\T2,
subjects experience rewards earlier than before,
and should start responding sooner because here
wait time is controlled by T2. In other words, in
downward transitions wait time should change
immediately, but in upward transitions the mod-
ification should be more progressive, since delay-
ing responding is only justified when the estimated
probability of obtaining a reward at the earlier
time is very low. This is the typical pattern of
adjustment in wait times (Higa, 1997a,b). The
difference between peak times and wait times
stems from the fact that peak times are influenced
both by the times to start and stop responding.

5. Implications for BeT and SET

The classical formulations of BeT and SET do
not make specific predictions concerning what
results should have been obtained in our experi-
ments. BeT and SET represent two different
philosophies of how is best to model behavioral
timing. In SET (Gibbon, 1977; Gibbon and
Church, 1984; Gibbon et al., 1984) the subject is
modeled as measuring the length of relevant inter-
vals with a clock, using working memory to hold
the content of the clock as the interval elapses and
finally storing the content of working memory in
so-called reference memory, for later use. Behav-
ior is generated by retrieving information from
reference memory while measuring current
elapsed time. Crucially, there is a decision subsys-
tem that uses the stored information to generate
actions, so that behavior does not reflect the
unmodified content of memory (thresholds and
comparison rules are involved). According to BeT
(Killeen and Fetterman, 1988) the organism goes
through a series of states, following a time-depen-
dent sequence. Temporal regularities in the envi-
ronment result in different states being associated
with reinforcement, and appropriate behaviors re-
occur when the animal finds itself in the rein-
forced state. No explicit representation of time
intervals is proposed and no decision subsystem
intervenes, other than the determination of the
threshold above which an association between a

state and reinforcement is strong enough to re-
spond. The timing of responses can vary if moti-
vational factors speed up or slow down the rate of
transition between states, if new states are associ-
ated with reinforcement, or if, for whatever rea-
son, the strength of the association between a
state and reinforcement required for responding
changes.

Our qualitative model is easily translatable to
the SET framework. SET assumes that the
asymptotic representation in reference memory of
the value of the time of reinforcement is a proba-
bility density function, with a maximum probabil-
ity at the veridical interval length and spread
proportional to this value. Todd and Kacelnik
(1993) have proposed a memory-updating process
that leads to a modification of reference memory
which is very similar to the modification of the
estimated probability of reinforcement, P(t), de-
scribed above (conceptually they are different:
P(t) includes other sources of uncertainty, such as
that induced by time perception during the cur-
rent trial). Hence, if the subject responds when the
reference memory distribution is above a fixed
threshold, all the considerations discussed for the
optimality model apply.

A somewhat similar reasoning can explain how
BeT might implement two-step transitions. If the
length of the trials remains constant, as in the
experiment reported by Meck et al. (1984), the
rate of the pacemaker does not change and, there-
fore, the only way in which the subject can adapt
to the new contingencies is by forming new associ-
ations between states of the animal and reinforce-
ment (Killeen and Fetterman, 1988). We can
imagine that the strength of the association be-
tween states and reinforcement changes in an
analogous way to the memory representation of
the time intervals in Todd and Kacelnik’s 1993
model: in a reinforced trial, the association be-
tween the reinforced state and reinforcement in-
creases, and the association between other states
and reinforcement decreases. If subjects respond
during those states that have an association with
reinforcement greater than some fixed threshold,
we find ourselves in the same scenario as before.

Both SET and BeT would seem to be compat-
ible with the continuous and discontinuous ad-
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justments reported in the literature. But this com-
patibility is achieved at a price. For instance, in
order to make SET compatible with a two-step
adjustment of the peak time, we have had to
assume that subjects have some global knowledge
of their reference memory contents (that is, that
subjects ‘know’ P(t) for all t : it is more frequent
to assume that subjects do not have this knowl-
edge, and that they behave on the basis of ran-
dom samples—or some measure of the
distribution central tendency—taken from refer-
ence memory at the beginning of each trial). If
that were not the case in our situation we would
not see the qualitative features described above,
but neither would dual peak response patterns be
obtained in multiple peak experiments such as

those reported by Bateson and Kacelnik (1997)
and Leak and Gibbon (1995). Clearly, SET needs
further refinements to accommodate both the
properties of memory sampling and of expressions
of differential responding at multiple temporal
loci within each trial.

Likewise, although BeT can, in principle, be
made compatible with a two-step adjustment to
the new value of the reinforced time, we have
been unable to simulate this result with the dy-
namic implementation of BeT recently proposed
by Machado (1997). Machado’s model removes
some of the flexibility inherent in BeT (as origi-
nally formulated by Killeen and Fetterman, 1988)
by specifying two of its processes: credit assign-
ment (how internal states are associated with ex-

Fig. 10. Expected average response rate (arbitrary units), according to Machado’s (1997) model, as a function of time in the trial,
before the transition (solid circles) and for several numbers of post-transition reinforced trials (empty circles: three trials, solid
triangles: 12 trials, and empty triangles: 30 trials) when subjects experience a shift in the reinforced time from 30 to 10 s (a and b)
or from 10 to 30 s (c and d). In (a) and (c) we assumed that the rate of the pacemaker, l, remains constant after the transition. In
(b) and (d), it approached the asymptotic value (calculated from the requirement that l · T must be constant) exponentially, at the
rate of 95% per trial at the new time to reinforcement.
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Fig. 11. Modification of the peak response time (s), according to Machado’s (1997) model, as a function of the number of
post-transition reinforced trials when subjects experience a shift in the reinforced time from 20 to 10 s (FI 20 � FI 10) or from 10
to 20 s (FI 10 � FI 20). For these simulations, we assumed that the rate of the pacemaker, l, changes after each new post-transition
reinforced trial according to the equation l %=l2−r · (l2−l), where l is the rate of the pacemaker before the trial, l % after the trial,
and l2 its asymptotic value (calculated from the requirement that l · T must be constant (Machado, 1997)). Different curves in the
figure correspond to different values of r.

ternal events) and the relationship between
strength of associations and behavior. Despite
these restrictions, Machado’s model retains four
free parameters: two learning rate parameters, a

and b (for asymptotic performance, only their
ratio needs be taken into account, but two values
must be provided to study dynamics), the rate of
the behavioral pacemaker, l, and a motivational
parameter, A (this one needs not be taken into
account when studying qualitative patterns).
Moreover, the learning rate parameters take low
values when fitting data from asymptotic perfor-
mance and high values when fitting data from the
dynamics of time discrimination (Machado,
1997), and the rate of the pacemaker must depend
on reinforcement rate (as is the case with the
original version of BeT, Killeen and Fetterman,
1988). These considerations imply that, when we
try to fit data from a transition experiment as the
one we have performed, some parameters (cer-
tainly l) must be allowed to take different values

for different trials. In practice, this implies that
Machado’s model can account for a large number
of transitional patterns (see Figs. 10 and 11 for
some examples). And yet, we have been unable to
find any set of parameter values leading to a
two-step adjustment of peak rates (Fig. 10). In
particular, changing the proportion of reinforced
trial does not seem to have any effect on the
pattern of adjustment. (Although we have tried a
broad range of parameter values, not all values in
this range have been used in our simulations. It is,
of course, possible, that further investigation will
show that some parameter values do exist which
lead to a two-step transition.)

6. Concluding remarks

The results from experiments studying the dy-
namics of time discrimination showing both con-
tinuous and discontinuous transitions can be
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accounted for using at least two theoretical ap-
proaches to timing, BeT and SET. We developed
an argument based on maximization of the
profitability of responding which shares important
properties with SET (the time of expected reward
is a probability density function that obeys We-
ber’s Law). However, in our account it is not
necessary to identify components such as working
or reference memory, we simply assume that re-
ward is expected at each time with a certain
probability, that responding occurs when this
probability is above some threshold and that in a
transition changes of responding are due to grad-
ual migration of response expectation between the
original and the post-transition times. This
smooth updating of estimated probability can
generate several properties of the data, including
discontinuities in some cases. We stopped short of
developing a rigorous rate maximization model:
this is perfectly possible using an equivalent to
signal detection theory but testing such a model
would require estimates of relative costs of re-
sponding to reward in order to derive an optimal
value for the responding threshold and we have
no such information at the moment. Hopefully,
future experimentation will allow an even closer
marriage of functional and mechanistic views of
behavior in time-related tasks.
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Appendix A. Non-parametric test of continuity

This non-parametric test is based on the repli-
cated goodness-of-fit test (Sokal and Rohlf, 1995).
Consider first the data from a single subject:
during the N+1 trials following the transition,
this subject has response peaks at times t0, t1,

t2 . . . , tN. These peak times can be decomposed
as ti=ti+oi, where ti can be understood as the
peak time in the absence of behavioral variance
(whatever the sources of variance) and oi repre-
sents an error term, with unknown underlying
distribution. In our experiment, we expect t0 to be
close to 20 s and tN close to 10 s (assuming that
behavior has stabilized by the Nth trial).

In the absence of noise, if the transition be-
tween t0 and tN proceeded in k steps, the N
differences di= ti− ti−1 would be as follows: k of
them would be negative and the remaining ones
would be equal to zero. In practice, even if the
‘fundamental pattern’ of the transition (as de-
scribed by the ti) corresponds to k steps, the peak
times will normally show fluctuations, and few of
the di will be equal to zero. In this case, however,
one would expect to find among the N differences:
k negative and relatively large, the remaining ran-
domly distributed, and adding up to zero (on
average). In order to add up to zero, there should
be about as many positive and negative values of
the di (once the k large negative values have been
removed) or, if there are more of one sign than of
the other, those with the minority sign should
have larger absolute values. With this in mind, it
is easy to see how one would test the null hypoth-
esis ‘the underlying pattern of the transition has k
steps’:
1. Calculate di, for i=1, 2 . . . , N.
2. Select the k largest negative values of the di

(positive values if the steps are upwards).
3. If the underlying transition has more than k

steps, among the remaining N−k differences,
there should be more negative than positive
values and/or the negative differences should
be larger (in absolute value) than the positive
differences.

In all cases considered in this paper, the nega-
tive differences were, on average, larger (in abso-
lute value) than the positive differences (although
the difference was not significant). Therefore, if
the number of negative differences was higher
than the number of positive differences, one
would have to conclude that the underlying tran-
sition proceeds in more than k steps (k=2 for all
the analysis presented in the paper). For a single
subject, one could use a binomial test to compare
the number of positive and negative differences.
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For several subjects, one must use the replicated
goodness-of-fit test (Sokal and Rohlf, 1995).
This test is an extension of the binomial test
which produces two statistics: Gh and Gp. Gh is
associated with the homogeneity of the data
from different subjects. If the data is homoge-
neous, Gh is approximately distributed as a x2

n

variate, where n is the number of subjects minus
one. The statistic Gp is related to the hypothesis
of interest: if the proportion of positive differ-
ences is equal to the hypothesized value P (in
our case, P=0.5), Gp follows a x2

1 distribution.
Hence, all we need to do is to calculate Gp

(Sokal and Rohlf, 1995) and look in a table for
the probability that a variate with a x2

1 distribu-
tion yields this value. All P values given in the
paper are two-tailed.

It is convenient to point out some caveats of
this statistical test. First of all, since the test is
based on the binomial test, it is not very power-
ful: large sample sizes are required to detect de-
viations from the null hypothesis. A more
important problem is that, in practice, the test
can be difficult to implement, for the following
reason. Consider a subject which stabilizes its
behavior after M trials, and suppose that this
subject adjusts to the new environment in more
than k steps. If the number of trials used for
the test is NBM, it may be that the null hy-
pothesis is not rejected simply because some of
the steps have not been included in the analysis.
Using a small number of trials for the analysis
is therefore not desirable. If, on the other hand,
N\M, the differences following the Mth trial
can be expected to be randomly distributed: as
more trials are added (beyond the Mth one),
the overall proportion of negative differences
approaches 0.5 even if there are more negative
than positive differences among the initial M
trials. Hence, one should not use more than M
trials for the analysis either. The problem, there-
fore, is how to determine the value of M (the
point when behavior stabilizes). In this paper,
we have used visual inspection of the figures to
determine the value of M (the same number of
trials has been used for all subjects).

References

Bateson, M., 1993. Currencies for decision making: the forag-
ing starling as a model animal. Unpublished DPhil disser-
tation. Oxford University.

Bateson, M., Kacelnik, A., 1997. Starlings’ preferences for
predictable and unpredictable delays to food. Anim. Be-
hav. 53, 1129–1142.

Brunner, D., Kacelnik, A., Gibbon, J., 1992. Optimal foraging
and timing processes in the starling, Sturnus 6ulgaris : effect
of inter-capture interval. Anim. Behav. 44, 597–613.

Catania, A.C., 1970. Reinforcement schedules and psycho-
physical judgements: A study of some temporal properties
of behavior. In: Schoenfeld, W.N. (Ed.), The theory of
reinforcement schedules. Appleton-Century-Crofts, New
York, pp. 1–42.

Charnov, E.L., 1976. Optimal foraging: the marginal value
theorem. Theor. Popul. Biol. 9, 129–136.

Church, R.M., Meck, W.H., Gibbon, J., 1994. Application of
Scalar Timing Theory to Individual Trials. J. Exp. Psy-
chol.: Anim. Behav. Process. 20, 135–155.

Cuthill, I.C., Haccou, P., Kacelnik, A., 1994. Starlings (Stur-
nus 6ulgaris) exploiting patches: response to long-term
changes in travel time. Behav. Ecol. 5, 81–90.

Gibbon, J., 1977. Scalar Expectancy Theory and Weber’s law
in animal timing. Psychol. Rev. 84, 58–87.

Gibbon, J., Church, R.M., 1984. Sources of variance in an
information processing theory of timing. In: Roitblat,
H.L., Bever, T.G., Terrace, H.S. (Eds.), Animal Cognition.
Erlbaum, Hillsdale, NJ, pp. 456–488.

Gibbon, J., Church, R.M., 1992. Comparison of variance and
covariance patterns in parallel and serial theories of timing.
J. Exp. Anal. Behav. 57, 393–406.

Gibbon, J., Church, R.M., Meck, W.H., 1984. Scalar timing in
memory. In: Gibbon, J., Allan, L. (Eds.), Timing and time
perception. New York Academy of Sciences, NY, pp.
52–77.

Higa, J.J., 1996. Dynamics of time discrimination: II. The
effects of multiple impulses. J. Exp. Anal. Behav. 66,
117–134.

Higa, J.J., 1997a. Dynamics of temporal control in rats: the
effects of a brief transition in interval duration. Behav.
Process. 40, 223–229.

Higa, J.J., 1997b. Rapid timing of a single transition in
interfood interval duration by rats. Anim. Learn. Behav.
25, 177–184.

Kacelnik, A., Brunner, D., Gibbon, J., 1990. Timing mecha-
nisms in optimal foraging: some applications of scalar
expectancy theory. In: Hughes, R.N. (Ed.), Behavioural
Mechanisms of Food Selection. Springer-Verlag, Berlin,
pp. 63–81.

Kacelnik, A., Todd, I.A., 1992. Psychological mechanisms and
the marginal value theorem: effect of variability in travel
time on patch exploitation. Anim. Behav. 43, 313–322.

Killeen, P.R., 1981. Averaging theory. In: Bradshaw, C.M.,
Szabadi, E., Lowe, C.F. (Eds.), Quantification of steady-
state operant behavior. Elsevier North-Holland, Amster-
dam, pp. 21–34.



M.A. Rodrı́guez-Gironés, A. Kacelnik / Beha6ioural Processes 45 (1999) 173–191 191

Killeen, P.R., Fetterman, J.G., 1988. A behavioral theory of
timing. Psychol. Rev. 95, 274–295.

Leak, T.M., Gibbon, J., 1995. Simultaneous Timing of Multi-
ple Intervals: Implications of the Scalar Property. J. Exp.
Psychol.: Anim. Behav. Process. 21, 3–19.

Lejeune, H., Ferrara, A., Simons, F., Wearden, J.H., 1997.
Adjusting to changes in the time of reinforcement: Peak-in-
terval transitions in rats. J. Exp. Psychol.: Anim. Behav.
Process. 23, 211–231.

Machado, A., 1997. Learning the temporal dynamics of be-
havior. Psychol. Rev. 104, 241–265.

Mazur, J.E., 1997. Effects of rate of reinforcement and rate of
change on choice behaviour in transition. Q. J. Exp. Psy-
chol. 50B, 111–128.

Meck, W.H., Komeily-Zadeh, F.N., Church, R.M., 1984.
Two-Step Acquisition: Modification of an Internal Clock’s

Criterion. J. Exp. Psychol.: Anim. Behav. Process. 10,
297–306.

Roberts, S., 1981. Isolation of an internal clock. J. Exp.
Psychol.: Anim. Behav. Process. 7, 242–268.

Rodrı́guez-Gironés, M.A., 1995. Processes of behavioural tim-
ing and their implications for foraging theory. Unpub-
lished DPhil disertation. Oxford University.

Sokal, R.R., Rohlf, F.J., 1995. Biometry: the principles and
practice of statistics in biological research, 3rd edn. Free-
man, New York.

Todd, I.A., Kacelnik, A., 1993. Psychological mechanisms and
the Marginal Value Theorem: dynamics of scalar memory
for travel time. Anim. Behav. 46, 765–775.

Wynne, C.D.L., Staddon, J.E.R., Delius, J.D., 1996. Dynam-
ics of waiting in pigeons. J. Exp. Anal. Behav. 65, 603–
618.

.


